
Module 9

Digital logic circuits can be categorized based

on the nature of their inputs either:
• Combinational logic circuit

 It consists of logic gates whose outputs at any time are

determined from the present combination of inputs. It can

perform an operation that can be specified logically by a

set of Boolean functions. (The subsequent modules are

based on combinational logic circuit)

• Sequential logic circuit

 It employs storage elements in addition to logic gates.

 Their outputs are a function of the inputs and the state of

the storage elements. (the last module on flip-flops &

latches is on sequential logic circuits)

Combinational logic circuits can be constructed

based on the following steps:
1. Derive the Truth Table (to perform the given function)

2. Derive the Karnaugh Map (from the truth table)

3. Derive the simplified Boolean expression(s) (from the

K-map(s))

4. Draw the circuit diagram(s) (to implement the

simplified Boolean expression(s))

 Binary adder performs the addition of two or

more binary digits.

 Two types of binary adder:
• Half adder

 The input is two binary variables (a, b)

 The output is two binary variables (sum, cout being the

output carry)

• Full adder

 The input is three binary variables (a, b, cin being the

input carry)

 The output is two binary variables (sum, cout being the

output carry)

 This circuit needs:
• 2 inputs; augend (a) and addend (b)

• 2 outputs; sum (sum) and output carry (cout).

 Truth table:
a b sum cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

sum = a’b + ab’

cout = ab

Circuit diagram:

sum = a’b + ab’

cout = ab

 This circuit needs:
• 3 inputs; augend (a),addend (b) and input carry (cin)

• 2 outputs; sum (sum) and output carry (cout).

 Truth table:
a b cin sum cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

sum = a’b’cin + a’bcin’

 + ab’cin’ + abcin

cout = a’bcin + ab’cin

 + abcin’ + abcin

 Sum of minterms (derived from Truth Table)

 Karnaugh map:

 sum cout

 Simplified Boolean expressions:

sum = a’b’cin + a’bcin’

 + ab’cin’ + abcin

cout = a’bcin + ab’cin

 + abcin’ + abcin

 bcin

a

00

01

11

10

0 1 1

1 1 1

sum = a’b’cin + a’bcin’

 + ab’cin’ + abcin

 bcin

a

00

01

11

10

0 1

1 1 1 1

cout = bcin + acin

 + ab

Group1: bcin

Group2: acin Group3: ab

Circuit diagram:

sum = a’b’cin + a’bcin’

 + ab’cin’ + abcin

cout = bcin + acin

 + ab

A full adder can also be implemented by using

two half adders and an OR gate.

 Recaps half adder consists of AND and XOR

operation:

 Thus, in order to construct a full adder using half

adders, we need to represent the Boolean

expressions of a full adder using AND and XOR

operations.

sum = a’b + ab’

cout = ab

 Sum Boolean expression of a full adder:

Cout Boolean expression of a full adder:

sum = a’b’cin + a’bcin’ + ab’cin’ + abcin

sum = cin(a’b’ + ab) + cin’ (a’b + ab’)

sum = cin(a  b)’ + cin’ (a  b)

sum = (a  b)  c

 bcin

a

00

01

11

10

0 1

1 1 1 1

Group 1:ab Group 3:ab’cin

Group 2:a’bcin

cout = a’bcin + ab’cin

 + abcin’ + abcin

cout = ab + a’bcin + ab’cin

cout = ab + cin(a’b + ab’)

cout = ab + cin(a  b)

Circuit diagram of a full adder (which is made

up of 2 half adders and 1 OR gate):

sum = (a  b)  c

Or gate

Half adder

cout = ab + cin(a  b)

Half adder

An n-bits binary adder is capable of

performing addition of binary digits up to n

bits.

An n-bits binary adder requires for n full

adders setup in a cascaded manner.

 E.g. 4-bits binary adder with 4 full adders:

A 4-bits cascaded binary adder is capable of

performing 4 bits binary operation as follows:

i 4 3 2 1 0

Input Carry (ci) - 1 1 0 0

Augend (ai) - 1 1 1 0

Addend (bi) - 1 0 1 1

Sum (sum) - 1 0 0 1

Output carry

(ci+1)

1 1 1 1 0

E.g. Augend = 1110

E.g. Addend = 1011

Sum = 1001 with

output carry c4 = 1

 Properties:
• The bits are added with full adder, starting from the least

significant position to form the sum bit and carry bit then

proceeds to the higher significant bits.

• The innitial input carry c0 must be 0.

• The output carry ci+1 is transferred into the input carry

ci of the full adder that adds the higher significant bits.

• The sum bits are generated starting from the least

significant bit and are available as soon as the

corresponding previous carry bit is generated.

• Thus, all the carries must be generated for the correct

sum bits to appear at the outputs.

• If each full adder has a delay of tdelay;

Total delay = n × tdelay

End of Module 9

