CSNB214 Packet Tracer # Lab - Configuring IPv6 Addresses on Network Devices Topology # **Addressing Table** | Device | Interface | IPv6 Address | Prefix Length | Default Gateway | |--------|-----------|--------------------|---------------|-----------------| | R1 | G0/0 | 2001:DB8:ACAD:A::1 | 64 | N/A | | | G0/1 | 2001:DB8:ACAD:1::1 | 64 | N/A | | S1 | VLAN 1 | 2001:DB8:ACAD:1::B | 64 | N/A | | PC-A | NIC | 2001:DB8:ACAD:1::3 | 64 | FE80::1 | | РС-В | NIC | 2001:DB8:ACAD:A::3 | 64 | FE80::1 | ## **Objectives** Part 1: Set Up Topology and Configure Basic Router and Switch Settings Part 2: Configure IPv6 Addresses Manually Part 3: Verify End-to-End Connectivity # Background / Scenario Knowledge of the Internet Protocol version 6 (IPv6) multicast groups can be helpful when assigning IPv6 addresses manually. Understanding how the all-router multicast group is assigned and how to control address assignments for the Solicited Nodes multicast group can prevent IPv6 routing issues and help ensure best practices are implemented. In this lab, you will configure hosts and device interfaces with IPv6 addresses and explore how the all-router multicast group is assigned to a router. You will use **show** commands to view IPv6 unicast and multicast addresses. You will also verify end-to-end connectivity using the **ping** and **traceroute** commands. **Note**: The routers used with CCNA hands-on labs are Cisco 1941 ISRs with Cisco IOS Release 15.2(4). The switches used are Cisco Catalyst 2960s with Cisco IOS Release 15.0(2). Other routers, switches and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and output produced might vary from what is shown in the labs. Refer to the Router Interface Summary table at the end of the lab for the correct interface identifiers. **Note**: Make sure that the routers and switches have been erased and have no startup configurations. If you are unsure, contact your instructor. #### Required Resources - 1 Router (Cisco 1941 with Cisco IOS software, Release 15.2(4) or comparable) - 1 Switch (Cisco 2960 with Cisco IOS Release 15.0(2) image or comparable) - 2 PCs (Windows 7 or 8 with terminal emulation program, such as Tera Term) - Console cables to configure the Cisco IOS devices via the console ports - Ethernet cables as shown in the topology **Note**: The Gigabit Ethernet interfaces on Cisco 1941 routers are autosensing and an Ethernet straight-through cable may be used between the router and PC-B. If using another model Cisco router, it may be necessary to use an Ethernet crossover cable. # Part 1: Set Up Topology and Configure Basic Router and Switch Settings - Step 1: Cable the network as shown in the topology. - Step 2: Initialize and reload the router and switch. - Step 3: Verify that the PC interfaces are configured to use the IPv6 protocol. Verify that the IPv6 protocol is active on both PCs by ensuring that the **Internet Protocol Version 6** (TCP/IPv6) check box is selected in the Local Area Connection Properties window. ### Step 4: Configure the router. - a. Console into the router and enable privileged EXEC mode. - b. Assign the device name to the router. - c. Disable DNS lookup to prevent the router from attempting to translate incorrectly entered commands as though they were hostnames. - d. Assign **class** as the privileged EXEC encrypted password. - e. Assign cisco as the console password and enable login. - f. Assign **cisco** as the VTY password and enable login. - g. Encrypt the clear text passwords. - h. Create a banner that warns anyone accessing the device that unauthorized access is prohibited. - i. Save the running configuration to the startup configuration file. ## Step 5: Configure the switch. - a. Console into the switch and enable privileged EXEC mode. - b. Assign the device name to the switch. - c. Disable DNS lookup to prevent the router from attempting to translate incorrectly entered commands as though they were hostnames. - d. Assign class as the privileged EXEC encrypted password. - e. Assign **cisco** as the console password and enable login. - f. Assign **cisco** as the VTY password and enable login. - g. Encrypt the clear text passwords. - h. Create a banner that warns anyone accessing the device that unauthorized access is prohibited. - i. Save the running configuration to the startup configuration file. # Part 2: Configure IPv6 Addresses Manually # Step 1: Assign the IPv6 addresses to Ethernet interfaces on R1. Assign the IPv6 global unicast addresses, listed in the Addressing Table, to both Ethernet interfaces on R1. ``` R1(config)# interface g0/0 R1(config-if)# ipv6 address 2001:db8:acad:a::1/64 R1(config-if)# no shutdown R1(config-if)# interface g0/1 R1(config-if)# ipv6 address 2001:db8:acad:1::1/64 R1(config-if)# no shutdown R1(config-if)# end R1# ``` Issue the show ipv6 interface brief command to verify that the correct IPv6 unicast address is assigned to each interface. ``` R1# show ipv6 interface brief Em0/0 [administratively down/down] unassigned GigabitEthernet0/0 [up/up] FE80::D68C:B5FF:FECE:A0C0 2001:DB8:ACAD:A::1 GigabitEthernet0/1 [up/up] FE80::D68C:B5FF:FECE:A0C1 2001:DB8:ACAD:1::1 ``` c. Issue the **show ipv6 interface g0/0** command. Notice that the interface is listing two Solicited Nodes multicast groups, because the IPv6 link-local (FE80) Interface ID was not manually configured to match the IPv6 unicast Interface ID. **Note**: The link-local address displayed is based on EUI-64 addressing, which automatically uses the interface Media Access Control (MAC) address to create a 128-bit IPv6 link-local address. #### R1# show ipv6 interface g0/0 ``` GigabitEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::D68C:B5FF:FECE:A0C0 No Virtual link-local address(es): Global unicast address(es): 2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64 Joined group address(es): FF02::1 FF02::1:FF00:1 FF02::1:FFCE:A0C0 MTU is 1500 bytes <output omitted> ``` d. To get the link-local address to match the unicast address on the interface, manually enter the link-local addresses on each of the Ethernet interfaces on R1. #### R1# config t ``` Enter configuration commands, one per line. End with CNTL/Z. R1(config) # interface g0/0 R1(config-if) # ipv6 address fe80::1 link-local R1(config-if) # interface g0/1 R1(config-if) # ipv6 address fe80::1 link-local R1(config-if) # end R1(config-if) # end ``` **Note**: Each router interface belongs to a separate network. Packets with a link-local address never leave the local network; therefore, you can use the same link-local address on both interfaces. e. Re-issue the **show ipv6 interface g0/0** command. Notice that the link-local address has been changed to **FE80::1** and that there is only one Solicited Nodes multicast group listed. #### R1# show ipv6 interface q0/0 ``` GigabitEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::1 No Virtual link-local address(es): Global unicast address(es): 2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64 Joined group address(es): FF02::1 FF02::1:FF00:1 MTU is 1500 bytes <output omitted> ``` What multicast groups have been assigned to interface G0/0? ## Step 2: Enable IPv6 routing on R1. a. On a PC-B command prompt, enter the **ipconfig** command to examine IPv6 address information assigned to the PC interface. Has an IPv6 unicast address been assigned to the network interface card (NIC) on PC-B? ______ b. Enable IPv6 routing on R1 using the **IPv6 unicast-routing** command. ``` R1 # configure terminal R1(config) # ipv6 unicast-routing R1(config) # exit R1# *Dec 17 18:29:07.415: %SYS-5-CONFIG_I: Configured from console by console ``` c. Use the **show ipv6 interface g0/0** command to see what multicast groups are assigned to interface G0/0. Notice that the all-router multicast group (FF02::2) now appears in the group list for interface G0/0. **Note**: This will allow the PCs to obtain their IP address and default gateway information automatically using Stateless Address Autoconfiguration (SLAAC). ``` R1# show ipv6 interface g0/0 ``` ``` GigabitEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::1 No Virtual link-local address(es): Global unicast address(es): 2001:DB8:ACAD:A::1, subnet is 2001:DB8:ACAD:A::/64 [EUI] Joined group address(es): FF02::1 FF02::2 FF02::1:FF00:1 MTU is 1500 bytes <output omitted> ``` d. Now that R1 is part of the all-router multicast group, re-issue the **ipconfig** command on PC-B. Examine the IPv6 address information. Why did PC-B receive the Global Routing Prefix and Subnet ID that you configured on R1? ## Step 3: Assign IPv6 addresses to the management interface (SVI) on S1. Assign the IPv6 address listed in the Addressing Table to the management interface (VLAN 1) on S1. Also assign a link-local address for this interface. IPv6 command syntax is the same as on the router. ``` S1(config) # interface vlan 1 S1(config-if) # ipv6 address 2001:db8:acad:1::b/64 S1(config-if) # ipv6 address fe80::b link-local S1(config-if) # end S1# *Mar 1 03:25:26.681: %SYS-5-CONFIG I: Configured from console by console ``` b. Verify that the IPv6 addresses are properly assigned to the management interface using the **show ipv6** interface vlan1 command. ``` S1# show ipv6 interface vlan1 ``` No ``` Vlan1 is up, line protocol is up IPv6 is enabled, link-local address is FE80::B No Virtual link-local address(es): Global unicast address(es): 2001:DB8:ACAD:1::B, subnet is 2001:DB8:ACAD:1::/64 Joined group address(es): FF02::1 FF02::1:FF00:B MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent Output features: Check hwidb ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds (using 30000) ND NS retransmit interval is 1000 milliseconds ``` **Note:** The default 2960 Switch Database Manager (SDM) template does not support IPv6. It may be necessary to issue the command **sdm prefer dual-ipv4-and-ipv6 default** to enable IPv6 addressing before applying an IPv6 address to the VLAN 1 SVI. ## Step 4: Assign static IPv6 addresses to the PCs. a. Open the Local Area Connection Properties window on PC-A. Select Internet Protocol Version 6 (TCP/IPv6) and click Properties. b. Click the **Use the following IPv6 address** radio button. Refer to the Addressing Table and enter the **IPv6** address, **Subnet prefix length**, and **Default gateway** information. Click **OK**. - c. Click Close to close the Local Area Connection Properties window. - d. Repeat Steps 4a to c to enter the static IPv6 information on PC-B. For the correct IPv6 address information, refer to the Addressing Table. - e. Issue the **ipconfig** command from the command line on PC-B to verify the IPv6 address information. # Part 3: Verify End-to-End Connectivity a. From PC-A, ping **FE80::1**. This is the link-local address assigned to G0/1 on R1. ``` C:\>ping fe80::1 Pinging fe80::1 with 32 bytes of data: Reply from fe80::1: time<1ms Reply from fe80::1: time<1ms Reply from fe80::1: time<1ms Reply from fe80::1: time<1ms Ping statistics for fe80::1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms C:\>_ ``` Note: You can also test connectivity by using the global unicast address, instead of the link-local address. b. Ping the S1 management interface from PC-A. ``` C:\>ping 2001:db8:acad:1::b with 32 bytes of data: Reply from 2001:db8:acad:1::b: time=14ms Reply from 2001:db8:acad:1::b: time=2ms Reply from 2001:db8:acad:1::b: time=2ms Reply from 2001:db8:acad:1::b: time=3ms Reply from 2001:db8:acad:1::b: time=3ms Ping statistics for 2001:db8:acad:1::b: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli—seconds: Minimum = 2ms, Maximum = 14ms, Average = 5ms C:\>_ ``` c. Use the tracert command on PC-A to verify that you have end-to-end connectivity to PC-B. d. From PC-B, ping PC-A. ``` C:\>ping 2001:db8:acad:1::3 Pinging 2001:db8:acad:1::3 with 32 bytes of data: Reply from 2001:db8:acad:1::3: time<1ms Reply from 2001:db8:acad:1::3: time<1ms Reply from 2001:db8:acad:1::3: time<1ms Reply from 2001:db8:acad:1::3: time<1ms Ping statistics for 2001:db8:acad:1::3: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms C:\> ``` e. From PC-B, ping the link-local address for G0/0 on R1. ``` C:\>ping fe80::1 Pinging fe80::1 with 32 bytes of data: Reply from fe80::1: time<1ms Ping statistics for fe80::1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli—seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms C:\>_ ``` **Note**: If end-to-end connectivity is not established, troubleshoot your IPv6 address assignments to verify that you entered the addresses correctly on all devices. #### Reflection 1. Why can the same link-local address, FE80::1, be assigned to both Ethernet interfaces on R1? _____ What is the Subnet ID of the IPv6 unicast address 2001:db8:acad::aaaa:1234/64? _____ # **Router Interface Summary Table** | Router Interface Summary | | | | | | | |--------------------------|-----------------------------|-----------------------------|-----------------------|-----------------------|--|--| | Router Model | Ethernet Interface #1 | Ethernet Interface #2 | Serial Interface #1 | Serial Interface #2 | | | | 1800 | Fast Ethernet 0/0 (F0/0) | Fast Ethernet 0/1 (F0/1) | Serial 0/0/0 (S0/0/0) | Serial 0/0/1 (S0/0/1) | | | | 1900 | Gigabit Ethernet 0/0 (G0/0) | Gigabit Ethernet 0/1 (G0/1) | Serial 0/0/0 (S0/0/0) | Serial 0/0/1 (S0/0/1) | | | | 2801 | Fast Ethernet 0/0 (F0/0) | Fast Ethernet 0/1 (F0/1) | Serial 0/1/0 (S0/0/0) | Serial 0/1/1 (S0/0/1) | | | | 2811 | Fast Ethernet 0/0 (F0/0) | Fast Ethernet 0/1 (F0/1) | Serial 0/0/0 (S0/0/0) | Serial 0/0/1 (S0/0/1) | | | | 2900 | Gigabit Ethernet 0/0 (G0/0) | Gigabit Ethernet 0/1 (G0/1) | Serial 0/0/0 (S0/0/0) | Serial 0/0/1 (S0/0/1) | | | **Note**: To find out how the router is configured, look at the interfaces to identify the type of router and how many interfaces the router has. There is no way to effectively list all the combinations of configurations for each router class. This table includes identifiers for the possible combinations of Ethernet and Serial interfaces in the device. The table does not include any other type of interface, even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in Cisco IOS commands to represent the interface. ## **Device Configs** # Router R1 (After part 1 of this lab) ``` R1#sh run Building configuration... Current configuration : 1443 bytes ! version 15.2 service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname R1 ! boot-start-marker boot-end-marker ! ! enable secret 4 06YFDUHH61wAE/kLkDq9BGho1QM5EnRtoyr8cHAUg.2 ``` ``` no aaa new-model memory-size iomem 15 no ip domain lookup ip cef no ipv6 cef multilink bundle-name authenticated ! interface Embedded-Service-Engine0/0 no ip address shutdown interface GigabitEthernet0/0 no ip address shutdown duplex auto speed auto interface GigabitEthernet0/1 no ip address shutdown duplex auto speed auto interface Serial0/0/0 no ip address shutdown clock rate 2000000 interface Serial0/0/1 no ip address shutdown ip forward-protocol nd no ip http server no ip http secure-server control-plane banner motd ^C *********** * Warning: Unauthorized access is prohibited! * ^C line con 0 ``` ``` password 7 01100F175804 login line aux 0 line 2 no activation-character no exec transport preferred none transport input all transport output pad telnet rlogin lapb-ta mop udptn v120 ssh stopbits 1 line vty 0 4 password 7 104D000A0618 login transport input all scheduler allocate 20000 1000 end ``` # Switch S1 (After part 1 of this lab) ``` S1#sh run Building configuration... Current configuration: 1624 bytes version 15.0 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption hostname S1 boot-start-marker boot-end-marker enable secret 4 06YFDUHH61wAE/kLkDq9BGho1QM5EnRtoyr8cHAUg.2 no aaa new-model system mtu routing 1500 ! no ip domain-lookup spanning-tree mode pvst spanning-tree extend system-id vlan internal allocation policy ascending ``` ``` interface FastEthernet0/1 shutdown interface FastEthernet0/2 shutdown interface FastEthernet0/3 shutdown interface FastEthernet0/4 shutdown interface FastEthernet0/5 interface FastEthernet0/6 interface FastEthernet0/7 interface FastEthernet0/8 interface FastEthernet0/9 interface FastEthernet0/10 interface FastEthernet0/11 interface FastEthernet0/12 interface FastEthernet0/13 interface FastEthernet0/14 interface FastEthernet0/15 interface FastEthernet0/16 interface FastEthernet0/17 interface FastEthernet0/18 interface FastEthernet0/19 interface FastEthernet0/20 interface FastEthernet0/21 interface FastEthernet0/22 interface FastEthernet0/23 ``` ``` interface FastEthernet0/24 interface GigabitEthernet0/1 interface GigabitEthernet0/2 interface Vlan1 no ip address ip http server ip http secure-server banner motd ^C * Warning: Unauthorzed access is prohibited! * *********** ^C line con 0 password 7 121A0C041104 login line vty 0 4 password 7 121A0C041104 login line vty 5 15 password 7 121A0C041104 login end Router R1 (Final) R1#show run Building configuration... Current configuration: 1577 bytes version 15.2 service timestamps debug datetime msec service timestamps log datetime msec service password-encryption hostname R1 boot-start-marker boot-end-marker enable secret 4 06YFDUHH61wAE/kLkDq9BGho1QM5EnRtoyr8cHAUg.2 ``` ``` no aaa new-model memory-size iomem 15 no ip domain lookup ip cef ipv6 unicast-routing ipv6 cef multilink bundle-name authenticated ! interface Embedded-Service-Engine0/0 no ip address shutdown interface GigabitEthernet0/0 no ip address duplex auto speed auto ipv6 address FE80::1 link-local ipv6 address 2001:DB8:ACAD:A::1/64 interface GigabitEthernet0/1 no ip address duplex auto speed auto ipv6 address FE80::1 link-local ipv6 address 2001:DB8:ACAD:1::1/64 interface Serial0/0/0 no ip address shutdown clock rate 2000000 interface Serial0/0/1 no ip address shutdown ip forward-protocol nd no ip http server no ip http secure-server control-plane banner motd ^C * Warning: Unauthorzed access is prohibited! *********** ^C ``` ``` line con 0 password 7 01100F175804 login line aux 0 line 2 no activation-character no exec transport preferred none transport input all transport output pad telnet rlogin lapb-ta mop udptn v120 ssh stopbits 1 line vty 0 4 password 7 104D000A0618 login transport input all scheduler allocate 20000 1000 end Switch S1 (Final) S1#sh run Building configuration... Current configuration: 1733 bytes ! version 15.0 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption hostname S1 boot-start-marker boot-end-marker enable secret 4 06YFDUHH61wAE/kLkDq9BGho1QM5EnRtoyr8cHAUg.2 no aaa new-model system mtu routing 1500 no ip domain-lookup spanning-tree mode pvst ``` ``` spanning-tree extend system-id vlan internal allocation policy ascending interface FastEthernet0/1 shutdown interface FastEthernet0/2 shutdown interface FastEthernet0/3 shutdown interface FastEthernet0/4 shutdown interface FastEthernet0/5 interface FastEthernet0/6 interface FastEthernet0/7 interface FastEthernet0/8 interface FastEthernet0/9 interface FastEthernet0/10 interface FastEthernet0/11 interface FastEthernet0/12 interface FastEthernet0/13 interface FastEthernet0/14 interface FastEthernet0/15 interface FastEthernet0/16 interface FastEthernet0/17 interface FastEthernet0/18 interface FastEthernet0/19 ``` ``` interface FastEthernet0/20 interface FastEthernet0/21 interface FastEthernet0/22 interface FastEthernet0/23 interface FastEthernet0/24 interface GigabitEthernet0/1 interface GigabitEthernet0/2 interface Vlan1 no ip address ipv6 address FE80::B link-local ipv6 address 2001:DB8:ACAD:1::B/64 ip http server ip http secure-server ! banner motd ^C *********** * Warning: Unauthorzed access is prohibited! * ********** ^C line con 0 password 7 121A0C041104 login line vty 0 4 password 7 121A0C041104 login line vty 5 15 password 7 121A0C041104 login end ```