OPERATING SYSTEM CONCEPTS LAB 2. CSNB224

UNIVERSITI
TENAGA

NASIONAL v

Objective: Implementation of Interrupt mechanism into the

instruction cycle

The prerequisite for a Multi Stream BATCH environment is a Multi-
Programming environment. Multiprogramming is an environment in which
more than one program exists in the memory at a time and any of them can
be executed under the control of a resident OS. Historically, first multi-
programmed operating systems were Multi-Stream Batch Monitors.

To enable the basic computer system with multiprogramming capability, its

instruction cycle must be modified to allow that.

This tutorial is designed to demonstrate such a capability.

Follow the following sequence:

i)

Load the debug program DEBUG thus:

C:\debug

i)

You will see the DEBUG CURSOR as a blinking hyphen “-“Tell the
debug to start assembling a program starting from location 100 in the

memory. To do that, use A100 command.

NOTE: Here the SEGMENT ADDRESS STARTS AT 0AD3:
It may be different in your PC.

NOTE: The symbol “./” represents “Press the Enter Key”, It is not part of your entries!

-A100~

0AD3:0100
0AD3:0103

0AD3:0105
0AD3:0107
0AD3:0109
0AD3:010B
0AD3:010D
0AD3:010F
0AD3:0111

MOV
MOV
INT
MOV
INT
MOV
MOV
INT
JMP

DX,0200
AH,09
21
AH,07

DL,AL

~
o
-
oy
o
o
o~
o

%

UNIVERSITI
TENAGA

NAaSIoONAL
OPERATING SYSTEM CONCEPTS LAB 2. CSNB224 v

NOTE: READ THIS!!

Explanation of the above code: _

A100: Instructing the IMBEDDED ASSEMBLER in the DEBUGGER to start assembling a
program in the memory starting at absolute memory address 100 (relative to its current segment
denoted by CS Register)

MOV DX, 0200: Point to Memory location 200 _

MOV AH, 09: Initialise AH with Function 9 of inferrupt 21. This function will start display of a
string of characters already stored in location pointed to by DX register. It continues output to the
display till it encounters a $ character. So it recognises the $ character as the “END OF STRING
QUTPUT".

INT 21: This system call is a set of Basic Input and Output functions. Functions are
numbered in HEX and each provide an Input or Output service. When a service is needed, the
programmer puts the function number in AH register and INVOKES INT 21 in subsequent
instruction (to call the function). Sometimes, other registers are involved to retumn parameters in
retum from the call or pass parameters to the function during the call. In this case we are
invoking String Output function 9 at RUN TIME.

i) Now, let's enter a string of characters into memory starting at location
200 and end it with the $ character. To do so, use the “e” command
(stands for ENTER), of the debug (observe the syntax).

-200 “I READ A CHARACTER AND DISPLAY IT. | CAN'T BE INTERRUPTED! $"

iv) Let’s use the “d” (stands for DUMP), command of the debug to see the
content of memory block starting at location 200 up to the first $§ we
encounter.

-d200 ~

And the debug will display 16 characters per line showing the HEX and ASCII
representation of the memory content with starting address information at the
beginning of each line. Note that the debug has entered your string as
entered.

What is the out that you see after you enter the above command? It will display the message that you
have written in the €200 command right?

UNIVERSITI
TENAGA

%

NAaSIoONAL
OPERATING SYSTEM CONCEPTS LAB 2. CSNB224 v

VIII) Now give a name to this program and save it. (This example is save in
a floppy). Use the “n=" command of the debug (stands for NAME a
FILE), and specify a VALID Drive name followed by the Path name (if
any), followed by the File Name. Follow EXACTLY the steps bellow to
avoid any unpredictable result!

-N=C:\USERS\YOUR_ID'NO_INT.COM " < RESERVES A FILE INYOUR FOLDER >

-RCX . < TO SET THE CX (datum REG.)TO THE SIZE OF THE FILE >
CX 0000 < THE CX ONTENT IS ONLY 0 BYTE >

1300) <WE ENTER 300 TO SETIT FOR 300 BYTES >

-RBX o < SEE THE VALUE OF BASE COUNTER >

BX 0000 <ITIS 0. DON'T CHANGE IT!! >

: . <JUST PRESS ENTER TO LEAVEITAT 0>

-W) < NOW WRITE IT ON THE FLOPPY DISK >

Writing 00300 bytes <IT IS CREATING THE FILE IN FLOPPY IN A: DRIVE >

IX) To check if the file exists in drive a, do the following:
Use the “g" command to quit the debug and enter the command
prompt. Then use the “dir” command to see the file info. Thus:

-Q -~/ <QUIT THE DEBUGGER>

C:\DIR «/ <CHECK TO SEE THE FILE IS ON YOUR FOLDER >
Volume in drive A has no label.
Volume Serial Number is 7CA5-6E80

Directory of A:\
07/08/01 12:31p 768 no_int.com <HEREITIS >
1 File(s) 768 bytes

697,344 bytes free

@

UNIVERSITI
TENAGA

NAaSIoONAL
OPERATING SYSTEM CONCEPTS LAB 2. CSNB224 v

X) OK! Now let's continue with the debugger and step through the
program by inserting the break points and see the internal state of the
CPU registers after execution of each instruction.

We first load our program from floppy A: and step through it. To do so, at
command prompt C:\ enter the command “debug” followed by the full name of the
file. Then at the “debug” prompt, enter the command “U100" to see the listing of your
program. (U command stands for “UNASSEMBLE"). Thus:

C:\WINNT\system32> DEBUG C:\USERS\YOUR_IDINO_INT.COM .~ <Load our programme>
U100 . <Unassembled the program>
0AD3:0100 BA0002 MOV DX,0200
0AD3:0103 B409 MOV AH,09
0AD3:0105 CD21 INT 21
0AD3:0107 B407 MOV AH,07
0AD3:0109 CD21 INT 21
0AD3:010B 88C2 MOV DLAL
0AD3:010D B402 MOV AH,02
0AD3:010F CD21 INT 21
0AD3:0111 EBF4 JMP 0107

Use command “R" (stands for show the registers) to examine the register’s
before we step through the program. Then use the “G=" command followed by
the start and end address of the instruction(s). Thus:

-R~

AX=0000 BX=0000 CX=0300 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000

DS=0AD3 ES=0AD3 SS=0AD3 CS=0AD3 IP=0100 NV UP EIPL NZ NA PO NC
0AD3:0100 BA0002 MOV DX,0200

-G=100 107~

| READ A CHARACTER AND DISPLAY IT. i CAN'T BE INTERRUPTED!

AX=0924 BX=0000 CX=0300 DX=0200 SP=FFFE BP=0000 SI=0000 DI=0000

DS=0AD3 ES=0AD3 SS=0AD3 CS=0AD3 IP=0107 NV UP EI PL NZNA PO NC
0AD3:0107 B407 MOV AH,07

Observe that the system call (function 9) is executed and the string is output.

UNIVERSITI
TENAGA

OPERATING SYSTEM CONCEPTS LAB 2. CSNB224

NOTE: READ THISI!

If we re-examine the code we will observe that from location 107 to 111 the code
represents an INFINITE LOOP. It calls two functions (function 7 and 2 of interrupt 21)
and then at 111 executes an un-conditional jump to location 107.

The service that function 7 provides is:

« Disable the interrupt mechanism

« \Wait until a key is depressed {entered from the key board)

« Once the key is entered, put its ASCII CODE into register A and RETURN to the

CALLING POINT in the caller program

The service that function 2 provides is:

« Display the character that is already in DL register, and return to the calling point.
(Observe that we have moved the AL to DL in the instruction “MOV DL, AL" at
location 10B to prepare for a call to the function 2 and after we have retumed from
the function 7 that has retumned the entered key in AL).

So, let's execute the loop. During the execution you will see that the program
reads a character and display it. It cannot be interrupted. To interrupt the
program you have to use CTRL+ ALT + DEL to terminate the program by
TASK MANAGER.

-G=100 107

| READ A CHARACTER AND DISPLAY IT. | CAN'T BE INTERRUPTED!

AX=0924 BX=0000 CX=0300 DX=0200 SP=FFFE BP=0000 SI=0000 DI=0000
DS=0AD3 ES=0AD3 SS=0AD3 CS=0AD3 IP=0107 NV UP EI PL NZ NA PO NC
0AD3:0107 B407 MOV AH,07

-G=107 113

%

NASIONAL v

For now, the only way for you to terminate the program is to click the close button on the
window. In order to make the program be able to close properly, change function 7 to 8

like the following code. Save the program as WITH_INT.COM

0AD3:0100 BA0002 MOV DX,0200
0AD3:0103 B409 MOV AH,09
0AD3:0105 CD21 INT 21
0AD3:0107 B407 MOV AH,08 «
0AD3:0109 CD21 INT 21
0AD3:010B 88C2 MOV DLAL
0AD3:010D B402 MOV AH,02
0AD3:010F CD21 INT 21
0AD3:0111 EBF4 JMP 0107

%

UNIVERSITI
TENAGA

NAaSIoONAL
OPERATING SYSTEM CONCEPTS LAB 2. CSNB224 v

To be able to break the loop the INSTRUCTION CYCLE MUST BE
MODIFIED to entertain an INTERRUPT REQUEST at the end of each cycle.
Such an instruction cycle looks like:

(START H FETCH H INCREMENT ’_» DECODE I__’ EXECUTE

ENABLE THE INTERRUPT
MECANISM

Save IP
Call FLTH

|

DISABLE INT MECHANISM

Remember:

. FETCH ==> Get the instruction addressed by IP in the

memory and load it into MBR , thus:

1.1 IP ==>MAR
12 [MAR] ==> DATA BUS
13 DATA BUS ==> MBR

. INCREMENT === Increment the IP by the increment factor

interpreted from the instruction's OPERATION CODE (OP
CODE) to get ready for next fetch, thus:
21 IP =IP + <INCREMENT FACTOR>

. DECODE ==> Send the Instruction code in the MBR to IR so

that IR interpret it and generate the EXECUTION CONTROL

SIGNALS needed for its execution, thus:

31 MBR ==> IR

3.2 IR ==> <Produce the micro code needed for the
execution control at the IR’s output>

. EXECUTE ==> Send the IR’s Output to the Sequencer to

starts the execution sequence, thus:
41 IR ==> Sequencer

AND WE NEED TO ADD MORE DETAILS HERE! WE DO THAT LATER!

%

UNIVERSITI
TENAGA

NAaSIoONAL
OPERATING SYSTEM CONCEPTS LAB 2. CSNB224 v

Now that the instruction cycle allows, a PROGRAM CAN BE WRITTEN in
such a way that the external processes can communicate with it by
INTERRUPTING IT TEMPORARILY. With such a machine we can implement
MULITIPROGRAMMING ENVIRONMENT and start developing MULTI
STREAM BATCH OPERATING SYSTEMS.

Xl) Function 8 of interrupt 21 is exactly like function 7 but it
ENABLES the interrupt mechanism after reading a character and
putting it in AL register. It allows the program be interrupted if
CTRL+C or CTRL+B (in some machines) is depressed at any time.

Xll) To demonstrate this, Download the program named WITH_INT.COM
and by now you should be able to step through it using the debug.

%

UNIVERSITI

TENAGA
NASIONAL v

OPERATING SYSTEM CONCEPTS LAB 2. CSNB224

