

Wireshark Lab: Getting Started

Version: 2.0
© 2007 J.F. Kurose, K.W. Ross. All Rights Reserved

Computer Networking: A Top-
down Approach, 4th edition.

“Tell me and I forget. Show me and I remember. Involve me and I understand.”
Chinese proverb

One’s understanding of network protocols can often be greatly deepened by “seeing
protocols in action” and by “playing around with protocols” – observing the sequence of
messages exchanged between two protocol entities, delving down into the details of
protocol operation, and causing protocols to perform certain actions and then observing
these actions and their consequences. This can be done in simulated scenarios or in a
“real” network environment such as the Internet. The Java applets that accompany this
text take the first approach. In these Wireshark labs1, we’ll take the latter approach.
You’ll be running various network applications in different scenarios using a computer
on your desk, at home, or in a lab. You’ll observe the network protocols in your computer
“in action,” interacting and exchanging messages with protocol entities executing
elsewhere in the Internet. Thus, you and your computer will be an integral part of these
“live” labs. You’ll observe, and you’ll learn, by doing.

The basic tool for observing the messages exchanged between executing protocol entities
is called a packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”)
messages being sent/received from/by your computer; it will also typically store and/or
display the contents of the various protocol fields in these captured messages. A packet
sniffer itself is passive. It observes messages being sent and received by applications and
protocols running on your computer, but never sends packets itself. Similarly, received
packets are never explicitly addressed to the packet sniffer. Instead, a packet sniffer
receives a copy of packets that are sent/received from/by application and protocols
executing on your machine.

1 Earlier versions of these labs used the Ethereal packet analyzer. In May 2006, the developer of Ethereal
joined a new company, and had to leave the Ethereal® trademarks behind. He then created the Wireshark
network protocol analyzer, a successor to Ethereal®. Since Ethereal® is no longer being actively
maintained or developed, we have thus switched these labs over to Wireshark with the 4th edition of our
text.

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols
(in this case, Internet protocols) and applications (such as a web browser or ftp client)
that normally run on your computer. The packet sniffer, shown within the dashed
rectangle in Figure 1 is an addition to the usual software in your computer, and consists
of two parts. The packet capture library receives a copy of every link-layer frame that
is sent from or received by your computer. Recall from the discussion from section 1.5 in
the text (Figure 1.202) that messages exchanged by higher layer protocols such as HTTP,
FTP, TCP, UDP, DNS, or IP all are eventually encapsulated in link-layer frames that are
transmitted over physical media such as an Ethernet cable. In Figure 1, the assumed
physical media is an Ethernet, and so all upper layer protocols are eventually
encapsulated within an Ethernet frame. Capturing all link-layer frames thus gives you all
messages sent/received from/by all protocols and applications executing in your
computer.

operating
system

application

 packet
capture
(pcap)

copy of all Ethernet
frames sent/received

application (e.g., www
browser, ftp client)

Transport (TCP/UDP)
Network (IP)

Link (Ethernet)
Physical

packet
analyzer

packet sniffer

Figure 1: Packet sniffer structure
to/from network to/from network

The second component of a packet sniffer is the packet analyzer, which displays the
contents of all fields within a protocol message. In order to do so, the packet analyzer
must “understand” the structure of all messages exchanged by protocols. For example,
suppose we are interested in displaying the various fields in messages exchanged by the
HTTP protocol in Figure 1. The packet analyzer understands the format of Ethernet
frames, and so can identify the IP datagram within an Ethernet frame. It also understands
the IP datagram format, so that it can extract the TCP segment within the IP datagram.
Finally, it understands the TCP segment structure, so it can extract the HTTP message
contained in the TCP segment. Finally, it understands the HTTP protocol and so, for
example, knows that the first bytes of an HTTP message will contain the string “GET,”
“POST,” or “HEAD,” as shown in Figure 2.8 in the text.

2 Figure numbers refer to figures in the 4th edition of our text.

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs,
allowing us to display the contents of messages being sent/received from/by protocols at
different levels of the protocol stack. (Technically speaking, Wireshark is a packet
analyzer that uses a packet capture library in your computer). Wireshark is a free network
protocol analyzer that runs on Windows, Linux/Unix, and Mac computers. It’s an ideal
packet analyzer for our labs – it is stable, has a large user base and well-documented
support that includes a user-guide (http://www.wireshark.org/docs/wsug_html_chunked/),
man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ
(http://www.wireshark.org/faq.html), rich functionality that includes the capability to
analyze hundreds of protocols, and a well-designed user interface. It operates in
computers using Ethernet, Token-Ring, FDDI, serial (PPP and SLIP), 802.11 wireless
LANs, and ATM connections (if the OS on which it's running allows Wireshark to do
so).

Getting Wireshark

In order to run Wireshark, you will need to have access to a computer that supports both
Wireshark and the libpcap or WinPCap packet capture library. The libpcap software will
be installed for you, if it is not installed within your operating system, when you install
Wireshark.. See http://www.wireshark.org/download.html for a list of supported
operating systems and download sites

Download and install the Wireshark software:

• Go to http://www.wireshark.org/download.html and download and install the
Wireshark binary for your computer.

• Download the Wireshark user guide.
The Wireshark FAQ has a number of helpful hints and interesting tidbits of information,
particularly if you have trouble installing or running Wireshark.

Running Wireshark

When you run the Wireshark program, the Wireshark graphical user interface shown in
Figure 2 will de displayed. Initially, no data will be displayed in the various windows.

listing of
captured
packets

details of
selected

packet
header

packet content
in hexadecimal

and ASCII

display filter
specification

command
menus

Figure 2: Wireshark Graphical User Interface

The Wireshark interface has five major components:

• The command menus are standard pulldown menus located at the top of the
window. Of interest to us now are the File and Capture menus. The File menu
allows you to save captured packet data or open a file containing previously
captured packet data, and exit the Wireshark application. The Capture menu
allows you to begin packet capture.

• The packet-listing window displays a one-line summary for each packet
captured, including the packet number (assigned by Wireshark; this is not a
packet number contained in any protocol’s header), the time at which the packet
was captured, the packet’s source and destination addresses, the protocol type,
and protocol-specific information contained in the packet. The packet listing can
be sorted according to any of these categories by clicking on a column name. The
protocol type field lists the highest level protocol that sent or received this packet,
i.e., the protocol that is the source or ultimate sink for this packet.

• The packet-header details window provides details about the packet selected
(highlighted) in the packet listing window. (To select a packet in the packet
listing window, place the cursor over the packet’s one-line summary in the packet
listing window and click with the left mouse button.). These details include
information about the Ethernet frame (assuming the packet was sent/receiverd
over an Ethernet interface) and IP datagram that contains this packet. The amount
of Ethernet and IP-layer detail displayed can be expanded or minimized by
clicking on the plus-or-minus boxes to the left of the Ethernet frame or IP
datagram line in the packet details window. If the packet has been carried over
TCP or UDP, TCP or UDP details will also be displayed, which can similarly be
expanded or minimized. Finally, details about the highest level protocol that sent
or received this packet are also provided.

• The packet-contents window displays the entire contents of the captured frame,
in both ASCII and hexadecimal format.

• Towards the top of the Wireshark graphical user interface, is the packet display
filter field, into which a protocol name or other information can be entered in
order to filter the information displayed in the packet-listing window (and hence
the packet-header and packet-contents windows). In the example below, we’ll
use the packet-display filter field to have Wireshark hide (not display) packets
except those that correspond to HTTP messages.

Taking Wireshark for a Test Run

The best way to learn about any new piece of software is to try it out! We’ll assume that
your computer is connected to the Internet via a wired Ethernet interface. Do the
following

1. Start up your favorite web browser, which will display your selected homepage.

2. Start up the Wireshark software. You will initially see a window similar to that

shown in Figure 2, except that no packet data will be displayed in the packet-
listing, packet-header, or packet-contents window, since Wireshark has not yet
begun capturing packets.

3. To begin packet capture, select the Capture pull down menu and select Options.

This will cause the “Wireshark: Capture Options” window to be displayed, as
shown in Figure 3.

Figure 3: Wireshark Capture Options Window

4. You can use most of the default values in this window, but uncheck “Hide capture
info dialog” under Display Options. The network interfaces (i.e., the physical
connections) that your computer has to the network will be shown in the Interface
pull down menu at the top of the Capture Options window. In case your computer
has more than one active network interface (e.g., if you have both a wireless and a
wired Ethernet connection), you will need to select an interface that is being used
to send and receive packets (mostly likely the wired interface). After selecting the
network interface (or using the default interface chosen by Wireshark), click Start.
Packet capture will now begin - all packets being sent/received from/by your
computer are now being captured by Wireshark!

5. Once you begin packet capture, a packet capture summary window will appear, as
shown in Figure 4. This window summarizes the number of packets of various
types that are being captured, and (importantly!) contains the Stop button that will
allow you to stop packet capture. Don’t stop packet capture yet.

 Figure 4: Wireshark Packet Capture Window

6. While Wireshark is running, enter the URL:

 http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html
and have that page displayed in your browser. In order to display this page, your
browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP
messages with the server in order to download this page, as discussed in section
2.2 of the text. The Ethernet frames containing these HTTP messages will be
captured by Wireshark.

7. After your browser has displayed the INTRO-wireshark-file1.html page, stop

Wireshark packet capture by selecting stop in the Wireshark capture window.
This will cause the Wireshark capture window to disappear and the main
Wireshark window to display all packets captured since you began packet capture.
The main Wireshark window should now look similar to Figure 2. You now have
live packet data that contains all protocol messages exchanged between your
computer and other network entities! The HTTP message exchanges with the
gaia.cs.umass.edu web server should appear somewhere in the listing of packets
captured. But there will be many other types of packets displayed as well (see,
e.g., the many different protocol types shown in the Protocol column in Figure 2).

Even though the only action you took was to download a web page, there were
evidently many other protocols running on your computer that are unseen by the
user. We’ll learn much more about these protocols as we progress through the
text! For now, you should just be aware that there is often much more going on
than “meet’s the eye”!

8. Type in “http” (without the quotes, and in lower case – all protocol names are in

lower case in Wireshark) into the display filter specification window at the top of
the main Wireshark window. Then select Apply (to the right of where you entered
“http”). This will cause only HTTP message to be displayed in the packet-listing
window.

9. Select the first http message shown in the packet-listing window. This should be

the HTTP GET message that was sent from your computer to the
gaia.cs.umass.edu HTTP server. When you select the HTTP GET message, the
Ethernet frame, IP datagram, TCP segment, and HTTP message header
information will be displayed in the packet-header window3. By clicking plus-
and-minus boxes to the left side of the packet details window, minimize the
amount of Frame, Ethernet, Internet Protocol, and Transmission Control Protocol
information displayed. Maximize the amount information displayed about the
HTTP protocol. Your Wireshark display should now look roughly as shown in
Figure 5. (Note, in particular, the minimized amount of protocol information for
all protocols except HTTP, and the maximized amount of protocol information for
HTTP in the packet-header window).

10. Exit Wireshark

Congratulations! You’ve now completed the first lab.

3 Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained within a
TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in an Ethernet
frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text

Figure 5: Wireshark display after step 9

What to hand in

The goal of this first lab was primarily to introduce you to Wireshark. The following
questions will demonstrate that you’ve been able to get Wireshark up and running, and
have explored some of its capabilities. Answer the following questions, based on your
Wireshark experimentation:

1. List up to 10 different protocols that appear in the protocol column in the
unfiltered packet-listing window in step 7 above.

2. How long did it take from when the HTTP GET message was sent until the HTTP
OK reply was received? (By default, the value of the Time column in the packet-
listing window is the amount of time, in seconds, since Wireshark tracing began.
To display the Time field in time-of-day format, select the Wireshark View pull
down menu, then select Time Display Format, then select Time-of-day.)

3. What is the Internet address of the gaia.cs.umass.edu (also known as www-
net.cs.umass.edu)? What is the Internet address of your computer?

4. Print the two HTTP messages displayed in step 9 above. To do so, select Print
from the Wireshark File command menu, and select “Selected Packet Only” and
“Print as displayed” and then click OK.

