

OUTLINE				
Introduction				
Representation of S	ignals			
Representation of S	ystems (Filters)			
Time-Domain Analy	sis			
S Frequency Domain Analysis				
Filter Design				
Ø Graphical User Interface				
Signal Processing B	llockset			
Khaleel Ahmed (Dept. of Electronics	Signal Processing with MATLAB	April 15, 2016	4 / 65	

2/65

INTRODUCTION: DIGITAL SIGNAL PROCESSING (DSP)

- What is DSP?
- Ontinuous-Time and Discrete-Time
- Analog and digital signals
- Signal processing
- Overlopment of DSP
- O Digital Signal Processors (DSPs)
- Applications of DSP
- MATLAB and the Signal Processing Toolbox

Note

for a summary of functions in the Signal Processing Toolbox type

>> help signal

yed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

REPRESENTATION OF SIGNALS

What is a signal?

- functions of one or more independent variables, which
 - contain information about the
 - behavior or nature of some
 - process or phenomenon.

EXAMPLE

- Current in an electrical circuit is a function of time.
- Photograph brightness function of 2 spatial variables.
- S Video brightness function of 3 variables (2 spatial and 1 time).

7/65

April 15, 2016

5/65

OUTLINE

Introduction

- Presentation of Signals
- Sepresentation of Systems (Filters)
- Time-Domain Analysis
- S Frequency Domain Analysis
- Filter Design
- Graphical User Interface
- Signal Processing Blockset

Syed Khaleel Ahmed (Dept. of Electronics

April 15, 2016 6 / 65

REPRESENTATION OF SIGNALS (CONTD.)

Signal Classification

Several, two are very critical

- Ocontinuous-Time and Discrete-Time
 - x(t) is a continuous-time signal if it has
 a value defined at each point in time t.
 Example: Current through a resistor.

x[n] is a discrete-time signal if it has a value defined only at discrete points in time n.

Signal Processing with MATLAB

Example: The Stock market index.

The *independent variable* may be *inherently discrete* or may *become discrete due to sampling* of a continuous-time signal.

REPRESENTATION OF SIGNALS (CONTD.)

Signal Classification (contd.)

Several, two are very critical

- Ocontinuous-Time and Discrete-Time
- Analog and Digital

x(t) or x[n] is an *analog signal* if it can take any *real or complex value*.

Example: Current through a resistor.

x(t) or x[n] is a *digital signal* if it can take, *values only from a discrete set*.

Example:

Current through a resistor *as measured by a digital ammeter*.

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

April 15, 2016 9 / 65

REPRESENTATION OF SIGNALS (CONTD.)			
Discrete-Time	Use Vectors or Arrays		
EXAMPLE			
<pre>>> n = -10:10; >> x = sinc(pi*n/6); >> stem(n, x, 'filled'), gri >> title('Sinc Signal x[n]=si</pre>	.d .nc \pi n')		
Other MATLAB Defined: cos, tan, exp,	sinc, square, sawtooth, chirp		
Other not MATLAB Defined: Unit-Impul Rectangular Pulse.	se, Unit-Step, Unit-Ramp,		
Reader			
Write a MATLAB function to plot a discre	te-time unit-step signal.		
Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with I	MATLAB April 15, 2016 11 / 65		

REPRESENTATION OF SIGNALS (CONTD.)

Continuous-Time

Use Vectors or Arrays

EX.	AMPLE
>>	t = -5:.05:5;
>>	$x = sin(pi \star t);$
>>	plot(t, x), grid
>>	<pre>title('Sinusoidal Signal x(t)=sin \pi t')</pre>
>>	axis([-5 5 -1.1 1.1])

Other MATLAB Defined: cos, tan, exp, sinc, square, sawtooth, chirp **Not MATLAB Defined:** Unit-Impulse, Unit-Step, Unit-Ramp, Rectangular Pulse.

READER

Write a MATLAB function to plot a continuous-time unit-step signal.

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

April 15, 2016 10 / 65

REPRESENTATION OF SIGNAL	S (CONTD.)
Discrete-Time (contd.)	Use Vectors or Arrays
EXAMPLE (GENERATING OTHER SIGNAL	LS)
>> n = -10:10;	
>> d = (n==0);	
>> subplot(211), stem(n,	d, 'filled')
>> title('Unit Impulse \del	ta[n]')
>>	
>> u = (n>=0);	
>> subplot(212), stem(n,	u, 'filled')
<pre>>> title('Unit Step u[n]')</pre>	

Other not MATLAB Defined: Unit-Impulse, Unit-Step, Unit-Ramp, Rectangular Pulse.

REPRESENTATION OF SIGNALS (CONTD.)

DEDREGENTATION OF SUBTEME (CONT.)		
REPRESENTATION OF SYSTEMS (CONTD.)		
2. Zero-Pole-Gain – Continuous-Time		zpk
$G(s) = rac{K(s+b_1)(s+b_2)\cdots(s+b_m)}{(s+a_1)(s+a_2)\cdots(s+a_n)}.$		
Example		
$G(s) = \frac{10(s+4)}{(s+1)(s+2)(s+3)}$		
<pre>>> z = [-4]; >> p = [-1; -2; -3]; >> k = 10; >> sysG = zpk(z, p, k)</pre>		
Zero/pole/gain: 10 (s+4)		
(s+1) (s+2) (s+3)		
red Khaleel Ahmed (Dent. of Electronics Signal Processing with MATLAB	April 15, 2016	16 / 65

Representation of Systems (contd.)

3. Partial Fraction Expansion – Con	tinuous-Time	residu	le
$G(s)=rac{A_1}{s+a_1}+rac{A_2}{s+a_2}$	$\frac{A_n}{a_2}+\cdots+\frac{A_n}{s+a_n}.$		
Example			
$G(s)=rac{s}{s^3+6s^2}$	$\frac{1}{2} + 4$ $\frac{1}{2} + 11s + 6$		
>> num = [1 4]; >> den = [1 6 11 6];	<u>p</u> =		
<pre>>> [r p k] = residue(num,den) r =</pre>	-3.0000		
1 -	-2.0000		
0.5000	-1.0000		
-2.0000	k =		
1.5000	[]		
yed Khaleel Ahmed (Dept. of Electronics Signal Processing w	ith MATLAB	April 15, 2016 17	7 / 65

ilt
/ GE

Representation of Systems (contd.)

Transfer Function – Discrete-Time

$$G(z) = \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_{n-1} z + b_n}{a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n}$$
(1)
$$b_0 + b_1 z^{-1} + \dots + b_{n-1} z^{-(n-1)} + b_n z^{-n}$$

$$= \frac{b_0 + b_1 z^{-1} + \dots + b_{n-1} z^{-1} + b_n z^{-1}}{a_0 + a_1 z^{-1} + \dots + a_{n-1} z^{-(n-1)} + a_n z^{-n}}.$$
 (2)

2 Zero-Pole-Gain - Discrete-Time

$$G(z) = \frac{(z-\beta_1)(z-\beta_2)\cdots(z-\beta_n)}{(z-\alpha_1)(z-\alpha_2)\cdots(z-\alpha_n)}$$
(3)

$$= \frac{(1-\beta_1 z^{-1})(1-\beta_2 z^{-1})\cdots(1-\beta_n z^{-1})}{(1-\alpha_1 z^{-1})(1-\alpha_2 z^{-1})\cdots(1-\alpha_n z^{-1})}.$$
 (4)

Partial Fraction Expansion – Discrete-Time

$$G(z) = \frac{A_1 z}{z - \alpha_1} + \frac{A_2 z}{z - \alpha_2} + \dots + \frac{A_n z}{z - \alpha_n}$$
(5)

$$= \frac{A_1}{1 - \alpha_1 z^{-1}} + \frac{A_2}{1 - \alpha_2 z^{-1}} + \dots + \frac{A_n}{1 - \alpha_n z^{-1}}.$$
 (6)
Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016 18 / 65

REPRESENTATION OF SYSTEMS (CONTD.)1. Transfer Function – Discrete-Time (contd.)filtEXAMPLE
$$G(z) = \frac{1+z^{-1}}{1-0.756z^{-1}+0.125z^{-2}}; T_s = 0.001$$
>> numTF = [1 1];>> denTF = [1 -0.75 0.125];>> sysGTF = filt (numTF, denTF, 1e-3)Transfer function:1 + z^{-1}1 - 0.75 z^{-1} + 0.125 z^{-2}Sampling time: 0.001

REPRESENTATION OF SYSTEMS (CONTD.)

REPRESENTATION OF SYSTEMS (CONTD.)

2. Zero-Pole-Gain – Discrete-Time (contd.)	zpk (contd.)
Example	
$G(z) = \frac{10(1+z^{-1})}{(1-0.5z^{-1})(1-0.25z^{-1})} = \frac{10z(z+1)}{(z-0.5)(z-0.25)}$; $T_s = 10^{-3}$
<pre>>> zeroG = [0; -1]; >> poleG = [0.5; 0.25]; >> gainG = 10; >> sysGZPK = zpk(zeroG, poleG, gainG, 1e-3) Zero/pole/gain:</pre>	
(z-0.5) (z-0.25)	
ved Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB A	pril 15, 2016 22 / 65

4. State-Space – Discrete-Time	SS
Example	
x[n+1] = Ax[n] + Bu[n]; $y[n] = Cx[n] + Du[n]$	
<pre>>> A = [1 6; 2 -5]; >> B = [0.5; 0.25]; >> C = [1 2]; >> D = 0; >> >> sysG = ss(A, B, C, D); >> >> sysG = ss(A, B, C, D, -1); >> >> sysG = ss(A, B, C, D, 0.001);</pre>	

REPRESENTATION OF SYSTEMS (CONTD.)

REPRESENTATION OF SYSTEMS (CONTD.)

Transform	ations b	etweer	n represe	entations (con	td.)	
Example						
	G(z) =	$=\frac{1+2}{1}$	$\frac{z^{-1}+z^{-2}}{-z^{-2}}$	$\frac{2^{2}}{1+10z^{-1}}$ × $\frac{-2+3z^{-1}}{1+10z^{-1}}$	$+ z^{-2}$ + z^{-2}	
>> sos = >> >> [b, a	[1 1] = sc	1 1 ps2tf(0 -1 sos)	; -2 3 1	1 10 3	1];
b = -2	1	2	4	1		
a = 1	10	0	-10	-1		

REPRESENTATION OF SYSTEMS (CONTD.)

Transformations between representations (contd.)

EXAMPLE

Create a 5th order filter and convert to second order sections

TIME-DOMAIN ANALYSIS

Time Response of LTI Systems

Response of an LTI system y to an input x is given by

Ocontinuous-Time: The Convolution integral

$$y(t) = \int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d\tau \doteq x(t) * h(t)$$

2 Discrete-Time: The Convolution Sum

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] \doteq x[n] * h[n]$$

where *h* is the impulse response of the LTI system.

31 / 65

OUTLINE

TIME-DOMAIN ANALYSIS (CONTD.)	
Convolution	conv
Example	
Suppose	
$h[n] = \left\{egin{array}{ccc} lpha^n & 0 \leq n \leq 6 \ 0 & otherwise \end{array} ight. lpha = rac{1}{2}$	
$x[n] = \left\{ egin{array}{cc} 1 & 0 \leq n \leq 4 \ 0 & otherwise \end{array} ight.$	
<pre>>> n = 0:12; >> x = double((0<=n) & (n<=4)); >> subplot(311), stem(n, x, 'filled') >> >> h = ((1/2).^n).*((0<=n) & (n<=6)); >> subplot(312), stem(n, h, 'filled') >> >> y = conv(x, h); >> subplot(313), stem(n, y(1:13), 'filled')</pre>	
yed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 20	16 32 / 65

TIME-DOMAIN ANALYSIS (CONTD.)

Convolution conv (contd.)
Example
Suppose
$h[n] = \begin{cases} \alpha^n & -2 \le n \le 4 \\ 0 & \text{otherwise} \end{cases} \alpha = \frac{1}{2} \text{ and } x[n] = \begin{cases} 1 & -1 \le n \le 3 \\ 0 & \text{otherwise} \end{cases}$
<pre>>> nx = -5:10; >> x = double((-1<=nx) & (nx<=3)); >> nh = nx; >> h = ((1/2).^nh).*((-2<=nh) & (nh<=4)); >> y = conv(x, h); >> ny = min(nx) + min(nh):max(nx) + max(nh); >> subplot(311), stem(nx, x, 'filled') >> subplot(312), stem(nh, h, 'filled') >> subplot(313), stem(ny, y, 'filled')</pre>
yed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016 34 / 65

Transfer Function	filter, impz
Example (Impulse Response)	
y[n] - 0.75y[n-1] + 0.125y[n-2] = x[n] + x[n]	[<i>n</i> – 1]
$G(z) = \frac{1+z^{-1}}{1-0.75z^{-1}+0.125z^{-2}}$	
<pre>>> numz = [1 1]; >> denz = [1 -0.75 0.125]; >> n = 0:10; >> d = (n==0); >> h = filter(numz, denz, d); >> subplot(311), stem(n, d, 'filled') >> subplot(312), stem(n, h, 'filled') >> h = impz(numz, denz, 11);</pre>	

TIME-DOMAIN ANALYSIS (CONTD.)

OUTLINE	
Introduction	
Pepresentation of Signals	
Representation of Systems (Filters)	
Time-Domain Analysis	
Frequency Domain Analysis	
Filter Design	
Graphical User Interface	
Signal Processing Blockset	
yed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB	April 15, 2016 39 / 65

TIME-DOMAIN ANALYSIS (CONTD.)

FREQUENCY DOMAIN ANALYSIS

Frequency Response

Recall that for a Linear Time-Invariant (LTI) system, an input

 $x[n] = e^{j\omega n}$

 $y[n] = H(e^{j\omega})e^{j\omega n}$

produces an output

where

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

is called the *frequency response* of the system, or the *Fourier transform* of the impulse response h[n].

Also, the Fourier transform of the output is given by

 $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}).$

FREQUENCY DOMAIN ANALYSIS (CONTD.)

Frequency response (freqz) or Discrete-time Fourier transform

EXAMPLE

$$y[n] - 0.75y[n-1] + 0.125y[n-2] = x[n] + x[n-1]$$
$$H(e^{j\omega}) = \frac{1 + e^{-j\omega}}{1 - 0.75e^{-j\omega} + 0.125e^{-2j\omega}}$$

Sv	d Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016 41 //	35
	>> subplot(212), plot(w, angle(Hejw)*180/pi), gr	j
	>> subplot(211), plot(w, abs(Hejw)), grid	1
	>> Hejw = freqz(numz, denz, w);	
	>> w = linspace(-pi, pi, 101);	1
	>> denz = [1 -0.75 0.125];	1
	>> numz = [1 1];	1

FREQUENCY DOMAIN ANALYSIS (CONTD.) **Discrete Fourier transform (fft)** EXAMPLE (N-point DFT) $x_1[n] = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & otherwise \end{cases}$ >> M = 8; N = 16; n = 0:N-1; >> x1 = [ones(1,M) zeros(1,N-M)]; >> X1 = fft(x1, N); % N-point DFT >> subplot(221), stem(n, x1, 'filled'), title('x_1[n]') >> subplot(223), stem(n, abs(X1)), title('|X_1[k]|') >> subplot(224), stem(n, angle(X1)*180/pi), >> title('<X_1[k]') >> xx1 = ifft(X1, N);>> subplot(222), stem(n, xx1, 'filled'), title('xx_1[n]' Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016 43 / 65

FREQUENCY DOMAIN ANALYSIS (CONTD.)

Frequency Response

The discrete Fourier transform (DFT) of the length-N sequence x[n] is

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi k}{N}n}, \quad 0 \le k \le N-1.$$

Similarly the inverse discrete Fourier transform (IDFT) is

$$x[n] = rac{1}{N} \sum_{k=0}^{N-1} X[k] e^{jrac{2\pi n}{N}k}, \quad 0 \le n \le N-1.$$

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

April 15, 2016 42 / 65

Reader (<i>N</i> -point DFT)	
Consider the signal	
$x[n] = \left\{egin{array}{cc} 1 & 0 \leq n \leq 3 \ 0 & otherwise \end{array} ight.$	
Determine its N-point DFT	
• $N = 4$	
❷ N = 8	
0 N - 16	
$\mathbf{v} = \mathbf{v}$	

OUTLINE

Introduction		
Pepresentation of Signals		
8 Representation of Systems (Filters)		
Time-Domain Analysis		
Frequency Domain Analysis		
Filter Design		
Ø Graphical User Interface		
Signal Processing Blockset		
Sved Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB	April 15, 2016	45 / 65

FILTERS (CONTD.)

- $H_a(\Omega)$ is symmetric (even)
- Sufficient to consider $\Omega>0$
- $h_a(t)$ real-valued.
- Practical Considerations
 - $|H_a(\Omega)| = 1$ in pass band not possible
 - $|H_a(j\Omega)| = 0$ in stop band not possible
 - Abrupt transition from pass band to stop band not possible

47 / 65

Filters

Ideal Filters – Common Types – Frequency Response

- Ideal Lowpass Filters (LPF).
- Ideal Highpass Filters (HPF).
- Ideal Bandpass Filters (BPF).
- Ideal Bandstop Filters (BSF).
- Ideal Comb Filters.
- Notch Filters.

Syed Khaleel Ahmed (Dept. of Electronics

April 15. 2016 46 / 65

FILTERS (CONTD.)

Ideal Filters – Practical Considerations

• Ideal Filters not possible to build. Therefore, need to approximate.

Signal Processing with MATLAB

- Will consider LPFs. Same concept applies to all filters.
- Relax requirements as follows

 $1 - \delta_p \leq |H(j\Omega)| \leq 1 + \delta_p$ in pass band ($0 \leq \Omega \leq \Omega_p$)

 $|H(j\Omega)| \leq \delta_s$ in stop band ($\Omega_s \leq \Omega \leq \infty$)

Transition from pass band to stop band gradual

 \implies transition band ($\Omega_p \leq \Omega \leq \Omega_s$)

FILTERS (CONTD.)

Practical Filters – Specifications• δ_p – passband ripple δ_s – stopband ripple• $\alpha_p = -20 \log_{10}(1 - \delta_p)$ – peak passband ripple• $\alpha_s = -20 \log_{10}(\delta_s)$ – minimum stopband attenuation• $\alpha_s = -20 \log_{10}(\delta_s)$ – minimum stopband attenuation• Ω_p – passband edge frequency• Ω_p – passband edge frequency Ω_s – stopband edge frequency• $0 \le \Omega \le \Omega_p$ – passband $\Omega_s \le \Omega \le \infty$ – stopband• $\Omega_p \le \Omega \le \Omega_s$ – transition band• $\Omega_p \le \Omega \le \Omega_s$ – transition band• $\mathcal{G}(\Omega) = 20 \log_{10} |H_a(\jmath\Omega)|$ – gain function• $a(\Omega) = -20 \log_{10} |H_a(\jmath\Omega)|$ – attenuation (or loss) function.

FILTER DESIGN

Digital Filters

Recall that the general form of the transfer function of a digital filter is

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_{m-1} z^{-(m-1)} + b_m z^{-m}}{a_0 + a_1 z^{-1} + \dots + a_{n-1} z^{-(n-1)} + a_n z^{-n}}$$

- When *n* = 0, the denominator is a constant. Such a filter is an *FIR*, *all-zero*, *non-recursive*, *or moving average(MA)* filter.
- When *m* = 0, the numerator is a constant. Such a filter is an *IIR, all-pole, recursive, or autoregressive(AR)* filter.
- When *n* > 0 and *m* > 0, the filter is an *IIR, pole-zero, recursive, or autoregressive moving average(ARMA)* filter.

FILTERS (CONTD.)

Practical Filters – Normalized Specifications

- Passband: $\frac{1}{\sqrt{1+\epsilon^2}} \le |H_a(j\Omega)| \le 1. \implies$ Maximum passband gain = 0 dB
- Stopband: $|H_a(j\Omega)| \le \frac{1}{A} =$ Maximum stopband ripple. \implies minimum stopband attenuation = -20 log₁₀ ($\frac{1}{A}$).
- Transition Ratio (or selectivity parameter)

$$k = \frac{\Omega_p}{\Omega_s} < 1$$
 for an LPF.

• Discrimination parameter

$$k_1 = rac{\epsilon}{\sqrt{A^2 - 1}} << 1$$
 usually.

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

April 15, 2016 50 / 65

FILTER DESIGN (CONTD.)	
Classical IIR Filters	
Butterworth - butter	
[b, a] = butter(n, Wn, options) returns the transfer func	tion
[z, p, k] = butter(n, Wn, options) returns the zero-pole-g	gain
[A, B, C, D] = butter(n, Wn, options) state-space representa	tion
Ohebyshev Type I - cheby1	
Ohebyshev Type II - cheby2	
Elliptic - ellip	
Sessel (analog only) - besself	
Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016	52 / 65

FILTER DESIGN (CONTD.)

Classical IIR Filters (contd.)

EXAMPLE (BUTTERWORTH IIR FILTER)

For data sampled at 1000 Hz, design a 9th order highpass Butterworth IIR filter with cutoff frequency of 300 Hz,

- >> [b, a] = butter(9, 300/500, 'high'); >> freqz(b, a, 128, 1000)
- >> impz(b, a)

EXAMPLE (CHEBYSHEV TYPE I FILTER)

For data sampled at 1000 Hz, design a 9th order lowpass Chebyshev Type I filter with 0.5 dB of ripple in the passband and a cutoff frequency of 300 Hz.

April 15, 2016

53 / 65

55 / 65

```
>> [ b, a ] = cheby1( 9, 0.5, 300/500 );
>> freqz( b, a, 512, 1000 )
>> impz(b, a)
```

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

FILTER DESIGN (CONTD.) FIR Filter Design Examples EXAMPLE Design a 48th order FIR bandpass filter with passband $0.35 \le \omega \le 0.65$ >> b = fir1(48, [0.35 0.65]); >> freqz(b, 1, 512) >> impz(b, a) EXAMPLE Design an LPF using the optimal design method with specifications: Passband ripple $r_p = 0.01$; Stopband ripple $r_s = 0.1$; Sampling frequency $f_s = 8000$; Cutoff frequencies $f = [1500 \ 2000];$ Desired amplitudes $a = \begin{bmatrix} 1 & 0 \end{bmatrix}$; >> [n, fo, mo, w] = firpmord([1500 2000],... [1 0], [0.01 0.1], 8000); >> b = firpm(n, fo, mo, w); >> freqz(b, 1, 1024, 8000) >> impz(b, a) Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB April 15, 2016

FILTER DESIGN (CONTD.)

FIR Filters

1	Windowing fir1, fi blackmanharris, boh kaiser, nuttallwin, pa Apply window to true "brick wall" filter	ir2, kaiserord, bartlett, l Imanwin, chebwin, gau Irzenwin, rectwin, triang Incated inverse Fourier	barthannwin, blackm sswin, hamming, ha g, tukeywin. transform of desired	ian, .nn, /
2	Multiband with Trans Equiripple or least s frequency range	sition Bands quares approach over	firls, firpm, firpm sub-bands of the	ord
3	Constrained Least S Minimize squared in subject to maximum	Squares Itegral error over entire Perror constraints	fircls, firc frequency range	cls1
4	Arbitrary Response		cfi	rpm
	Arbitrary responses,	, including nonlinear ph	ase and complex fil	ters
5	Raised Cosine Lowpass response w	with smooth, sinusoida	firr I transition	COS
d Khale	el Ahmed (Dept. of Electronics	Signal Processing with MATLAB	April 15, 2016	54 / 65

OUTLINE	
Introduction	
Presentation of Signals	
Representation of Systems (Filters)	
Time-Domain Analysis	
S Frequency Domain Analysis	
Filter Design	
Graphical User Interface	
Signal Processing Blockset	
ed Khaleel Ahmed (Dent of Electronics Signal Processing with MATLAB	April 15, 2016 56 /

GRAPHICAL USER INTERFACE

S

Signal Processing Graphical User Interfaces (GU	ls)
• Filter Visualization Tool \implies to analyze digital filters.	fvtool(b, a).
Filter Design & Analysis Tool to design or import, and analyze digital FIF	f <mark>datool</mark> . R and IIR filters.
Signal Processing Tool	<mark>sptool</mark> , filters, and
Window Design & Analysis Tool to design and analyze windows.	wintool
 Window Visualization Tool to analyze windows. 	wvtool(w).
yed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB	April 15, 2016 57 / 65

GRAPHICAL USER INTERFACE (CONTD.)

Signal Processing Graphical User Interfaces (GUIs) (contd.)

EXAMPLE

Sye

y[n] - 0.75y[n-1] + 0.125y[n-2] = x[n] + 0.	5 <i>x</i> [<i>n</i> – 1]	
$G(e^{\jmath\omega}) = rac{1+e^{-\jmath\omega}}{1-0.75e^{-\jmath\omega}+0.125e^{-2\jmath\omega}}$		
>> numz = [1 1];		
>> denz = [1 -0.75 0.125];		
>> fvtool(numz, denz)		
>> fdatool		
>> sptool		
>> wintool		
>> w1 = bartlett(64);		
>> w2 = hamming(64);		
>> wvtool(w1, w2);		
d Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB	April 15, 2016	58 / 65

DSP System Toolbox (contd.)

What is the DSP System Toolbox?

- *a* tool for DSP algorithm simulation and code generation
- contains block libraries for signal processing, linear algebra, & matrix math
- works in the Simulink environment
- systems defined by interconnecting blocks
- blocks can be interconnected to create sophisticated models for simulating such operations as speech and audio processing, wireless digital communications, radar/sonar, medical electronics,
- can be used in conjunction with Real-Time Workshop to automatically generate code for real-time execution on DSP hardware

Signal Processing with MATLAB

Syed Khaleel Ahmed (Dept. of Electronics

April 15, 2016

61 / 65

DSP System Toolbox (contd.)

Accessing the Signal Processing Blockset?

- At the command prompt, type
 - >> dsplib
- 2 At the command prompt, type (or click the toolbar)
 - >> simulink

and expand the DSP System Toolbox by clicking the '+' symbol next to it

DSP System Toolbox (contd.)

Getting help

- Online: Place the block in a model, Double-click on the block to open a dialog box, and click Help button
- **2** Simulink library browser: Right-click block & choose from menu.
- **9 Help browser:** At the command prompt type

>> doc

or press F1 on the keyboard or select from the menu 'HelpightarrowProduct Help'

Click '+' next to the Signal Processing Blockset in Contents tab.

Command line: At the command prompt type doc('BlockName')

>> doc('dspblks/Constant')

- S Remote: go to www.mathworks.com
- **O Release information:** Type whatsnew at the command prompt.

Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB

April 15, 2016 63 / 65

OUTLINE

Introduction		
Prepresentation of Signals		
Representation of Systems (Filters)		
Time-Domain Analysis		
S Frequency Domain Analysis		
Filter Design		
Graphical User Interface		
Signal Processing Blockset		
Syed Khaleel Ahmed (Dept. of Electronics Signal Processing with MATLAB	April 15, 2016 65 /	5 / 65

