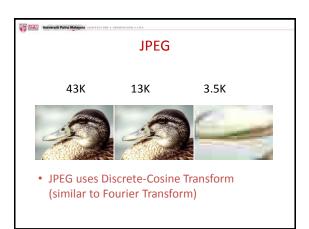


Benefits: Digital Signal Processing over Analogue Signal Processing

- 1. Flexibility of the system offered by the software component
- 2. Better control of accuracy requirements, i.e. no problem with external effects
- 3. Ease of storage and offline processing
- 4. Lower cost of processors
- 5. Compression and coding techniques are efficient to implement



Multimedia Applications

- Compression: Fast, efficient, reliable transmission and storage of data
- Applied on audio, image and video data for transmission over the Internet, storage
- Examples: CDs, DVDs, MP3, MPEG4, JPEG

Biological Signal Analysis

• Examples:

Universiti Putra Malaysia

- Brain signals (EEG)

Universiti Putra Malaysia AGRICULTURE - INNOVATION - LIFE

- Cardiac signals (ECG)
- Medical images (x-ray, PET, MRI)
- Goals:
 - Detect abnormal activity (heart attack, seizure)
 - Help physicians with diagnosis

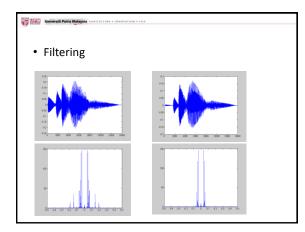
• Brain waves are usually contaminated by noise and hard to interpret $\int_{0}^{0} \int_{0}^{0} \int_{$

Biometrics

- Identifying a person using physiological characteristics
- Examples:

Universiti Putra Malaysia AGRICOLTURE - IN

- Fingerprint Identification
- Face Recognition
- Voice Recognition


Audio Signal Processing

- Active noise cancellation:Adaptive filtering – Headphones used in cockpits
- Digital Audio Effects

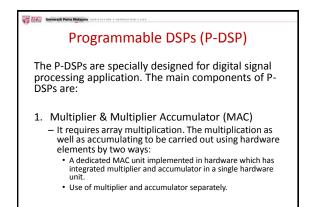
 Add special music effects such as delay, echo, reverb
- Audio signal separation

Universiti Putra Malaysia

- Separate speech from interference
- Wind sound from music in cars

New Algorithms in DSP

- Adaptive
- Multi-rate
- Mixed Analogue/Digital
- Non-linear

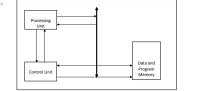

- Filters are signal conditioners
- Filter functions by accepting an input signal, blocking prespecified frequency components and passing the original signal minus those components to the output.

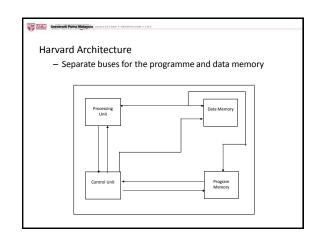
Digital Filters

Universiti Putra Malaysia AGRICOLTO

- Lowpass- Allows only low frequency signals to its outputs.
- Highpass-Allows only high frequency signals to its outputs.
- Bandpass-Allows only output signals within its narrow, government-authorized range of frequency spectrum.
- Bandstop-Allows both low and high frequencies, but blocks a predefined range of frequencies.

Convolution $\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$ $\mathcal{F}(f) * \mathcal{F}(g) = \mathcal{F}(f \cdot g)$


Universiti Putra Malaysia AGRICOLTULE - INNO


Universiti Putra Malaysia AGRICOLI

- 2. The Processor Architecture
 - There are mainly two types of architecture of microprocessor:

Von Neumann Architecture

 In this architecture a single address bus and a single data bus for accessing the programme as well as data memory area.

Decade	Characteristic	\$/MIPS
'60s	University Curiosity	\$100 - \$1,000
'70s	Military Advantage	\$10 - \$100
'80s	Commercial Success	\$1- \$10
'90s	Consumer Enabler	10¢ - \$1
Beyond	Expected Part of Daily Life	1¢ - 10¢

	Typical Device capabilities					
	<u>1980</u>	<u>1990</u>	<u>2000</u>	<u>2010</u>		
Die size (mm)	• 50	• 50	• 50	• 50		
Technology (uM)	• 3	• 0.8	• 0.1	• 0.02		
MIPS	• 5	• 40	• 5,000	• 50K		
MHz	• 20	• 80	• 1,000	• 10,000		
RAM (bytes)	• 256	• 2K	• 32K	• 1M		
Price	\$150.00	\$15.00	• \$5.00	• \$0.15		
Power (mW/MIPS)	• 250	• 12.5	• 0.1	• 0.001		
Transistors	• 50K	• 500K	• 5M	 50M 		
Wafer size	• 3"	• 6"	• 12"	• 12"		

DSP Chip for the Future

• Very low power

Universiti Putra Malaysia

- High speed operation
- Reconfigurable processor
- Customizable processor
- DSP chip with multiple integer and floating point MACs

