

Experimental Results

Example:

-Experiments were conducted on various numbers of subjects from ORL database of 40 subjects, where each subject consists of 10 different orientations of the images and non of them are identical.

-Each image of size 92x112 is resized to 64x64 to reduce complexity in computation. Figure 3 shows some of the train images from Cambridge University database (ORL database), with different orientation used in the experiments

	C (Zinc	, 001					
					Classification. accuracy (%)		
		Train images	Image1- image4	image5- image8	image9,10,1,2	image3- image6	image7- image10
No. of subjects/images	No. of train images	No. of test images					
5(50images) w/o spects.	20	30	100.00	100.00	100.00	100.00	100.00
20(200image) w/o spects.	80	120	91.67	95.83	95.83	90.83	96.67
25(250images) w/o spects.	100	150	89.33	94.67	96.00	90.67	94.67
30(300images) with spects.	120	180	89.44	95.00	96.11	90.00	94.44
40(400images) with spects.	160	240	84.17	91.25	92.50	87.08	83.75
Tal	ble 1. Perce (47 f	ntage clas eatures)	ssification	n accurac	y using ZM or	der 2 to 1	2

5

					Classification		
		Train images	image1- image4	image5- image8	accuracy (%) images 9,10,1,2	image3- image6	image7- image10
No of subjects/ images	No of train images	No of test images					
5(50images) w/o spectacles.	20	30	93.33	100.00	96.67	100.00	100.00
20(200images) w/o spectacles.	80	120	87.50	93.33	91.67	91.67	90.00
25(250images) w/o spectacles.	100	150	86.00	92.00	86.67	90.67	88.00
30(300images) with spectacles.	120	180	87.78	92.22	87.22	91.67	87.22
40(400images) with spectacles.	160	240	79.58	87.50	86.25	86.67	80.42

image7image10

96.67

85.00

77.33

75.00

68.75

					Classification accuracy (%)		
		Train images	image1- image4	image5- image8	Image 9,10, 1, 2	image3- image6	image7- image10
No of subjects/ images	No. of Train images	No. of test images					
5(50images) w/o spectacles	20	30	93.33	96.67	93.33	96.67	100.00
20(200images) w/o spectacles	80	120	92.50	92.50	90.83	90.00	90.00
25(250images) w/o spectacles	100	150	81.33	86.00	86.00	82.67	85.33
30(300images) with spectacles	120	180	83.33	87.78	87.22	85.00	87.22
40(400images) with spectacles	160	240	76.67	84.58	84.58	80.83	80.00
le 3(b): Cla	ssificatio	n accurac	ies of K	Ms at or	der 25 where	p1=0.9	and p2=

Applications

- Security System using Face Recognition al Hybrid Security System using Face R *A Coi Nurul Husna Muhamad Hassan, Rohani Ha een and Norfeini Abd Jelii'
- . Safety Box Access System using Face Recognition
- ety Box Access System Using Face Re Abdul Mutalib bin Abu Bakar
- Document Access System using Face Recognition "Smart Document Access System Using Face Recognition "
- Ahmad Fahmi Akmal Bin Muhammad Nor
- Others .

Conclusions

- Other then the applications mentioned above, face recognition has widely been applied in smart homes, high security organizations such as in banks and in surveillance operations where both applications involve real time face acquisition.
- applications involve real time face acquisition. The techniques of pre-processing the face images require further research in order to acquire precise recognition especially when it involves the complex surroundings. The capability of any feature extractors is very much dependent on the face database (i.e. subjected to constraints of the face images such as either they are well controlled in terms of expression, background illumination, orientation or otherwise).
- In the case where direct application of feature extraction does not show good performance hybrid technique can be considered.

